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We theoretically investigate the electromagnetic response of a novel class of multilayered metamaterials obtained
by alternating graphene sheets and dielectric layers, the whole structure not exhibiting a plane of reflection sym-
metry along the stacking direction. We show that the electromagnetic response of the structure is characterized by
a magneto-electric coupling described by an effective chiral parameter. Exploiting the intrinsic tunability of
graphene–light coupling, we prove that one can tune both the dielectric and the chiral electromagnetic response
by varying the graphene chemical potential through external voltage gating. © 2014 Chinese Laser Press
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1. INTRODUCTION
Graphene, a one-atom-thick layer of carbon atoms arranged in
a honeycomb lattice, shows a wide range of unique properties.
For example, graphene exhibits high thermal and electric
conductivity, a high optical damage threshold, and high
third-order optical nonlinearities [1]. Recently, many
graphene-based photonic and optoelectronic devices have
been proposed and developed, such as plasmonic waveguides
[2–4], frequency multipliers [5], modulators [6,7], photodetec-
tors [8], and polarizers [9]. In the context of metamaterials,
Vakil and Engheta [10] have theoretically proposed a setup
in which a graphene sheet is a one-atom-thick platform for
achieving the desired infrared metamaterials and transforma-
tion optical devices. On the other hand, several researchers
have investigated multilayer structures composed of stacked
graphene sheets separated by thin dielectric layers [11–15]. A
noteworthy advantage of such proposed metamaterials is the
overall tunability of the electromagnetic response, which is
entailed by the dependence of the graphene conducibility
on the chemical potential. For example, the graphene-based
metamaterial response can be tailored from elliptic birefrin-
gent to hyperbolic by varying the graphene chemical potential
through an external gate voltage [12].

In this paper, we propose a novel class of graphene-based
metamaterials exhibiting a marked chiral electromagnetic re-
sponse, and we demonstrate that such a nonlocal effect can be
tuned by varying the chemical potential of graphene sheets.
More precisely, we consider propagation of transverse mag-
netic (TM) waves through a multilayer periodic structure
not exhibiting a plane of reflection symmetry whose unit cell
comprises N layers of different dielectric materials alternated
with N graphene sheets. Exploiting a suitable multiscale ap-
proach in which the period-to-wavelength ratio is the small
expansion parameter, we obtain the constitutive equations
describing the spatially nonlocal metamaterial response.

Specifically, we refine the standard effective medium
theory (EMT) by deriving higher-order contributions predict-
ing, in particular, an overall medium chiral response for those
layer thicknesses not fully assuring homogenization. Gener-
ally, a reciprocal or chiral magneto-electric coupling is a
consequence of the medium 3D or 2D chirality; namely, the
underlying constituents (organic molecules, proteins, “meta-
molecules,” etc.) exhibit mirror asymmetry [16]. Chirality can
produce noteworthy effects such as optical rotation and neg-
ative refraction [17]. On the other hand, the configuration we
consider in this paper lacks a plane of mirror symmetry, caus-
ing an overall chiral medium response that is tunable due to
the presence of graphene sheets. It is worth stressing that usu-
ally considered bilayer metal–dielectric structures [18,19] and
graphene-based metamaterials (considered in Refs. [12–14],
where the metamaterial unit cell consists of a graphene
sheet placed on top of a dielectric material) show electromag-
netic response strongly affected by second-order spatial
dispersion, which, however, does not yield electromagnetic
chirality since the structure geometry admits a plane of mirror
symmetry.

The paper is organized as follows. In Section 2 we develop
an effective medium approach up to the first order in the
homogenization parameter for investigating effective spatial
dispersion produced by incomplete homogenization. In
Section 3 we discuss the electromagnetic chirality produced
by the effective spatial dispersion in the presence of medium
mirror asymmetry. In Section 4 we show that graphene can
both break the mirror symmetry of a layered medium and pro-
vide tunability for the so-induced effective electromagnetic
chiral response. In Section 5 we draw our conclusions.

2. EFFECTIVE MEDIUM APPROACH
Let us consider TM waves propagating in a graphene-based
metamaterial whose underlying multilayered structure has a
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unit cell obtained by stacking, along the z axis, N graphene
sheets separated by N layers of different media of thicknesses
dj (j � 1; 2; 3;…; N) (see Fig. 1, where the case in which
N � 2 is reported). The electromagnetic field amplitudes
E � Ex�x; z�êx � Ez�x; z�êz, H � Hy�x; z�êy associated with
monochromatic TM waves (the time dependence exp�−iωt�
has been assumed where ω is the angular frequency) satisfy
Maxwell’s equations

∂zEx − ∂xEz � iωμ0Hy;

∂zHy � iωϵ0ϵx�z�Ex;

∂xHy � −iωϵ0ϵz�z�Ez; (1)

where ϵx and ϵz are the x component and the z component of
the dielectric permittivity tensor, respectively, and both are
periodic functions of period d � PN

j�1 dj . Here, the jth gra-
phene sheet response is described by the surface conductivity
σj so that the surface current Kxj � σjEx yields a delta-like
contribution to ϵx, which is iσj∕�ωϵ0�δ�z − zj�, zj being the
sheet position [13] (see below). Note that the surface conduc-
tivities σj can assume different values in order to encompass
the relevant situation in which the graphene can be locally
tuned or substituted with more general bidimensional
hetero-structures.

In order to obtain an effective medium description of the
electromagnetic propagation in the regime in which the ratio
between the period d and the wavelength λ is small, we exploit
a standard and rather general multiscale technique [20,21]
holding for very general ϵx�z� and ϵz�z� periodic profiles
(which we will later specialize to the considered graphene-
based multilayer). Accordingly we introduce the parameter
η � d∕λ ≪ 1 and the fast coordinate Z � z∕η, and, aimed at
isolating the slowly and rapidly varying contributions, we con-
sider the Fourier series of ϵx and ϵ−1z , namely ϵx � hϵxi � δϵx,
ϵ−1z � hϵ−1z i � δϵ�−1�z , where hf i is the mean value of the
function f and

δϵx �
X
n≠0

an exp
�
in

2πz
d

�
�

X
n≠0

an exp�ink0Z�;

δϵ�−1�z �
X
n≠0

bn exp
�
in

2πz
d

�
�

X
n≠0

bn exp�ink0Z�; (2)

where k0 � 2π∕λ. The basic Ansatz of our approach is given by

Ex�x; z; Z� � Ēx�x; z� � ηδEx�x; z; Z�;
Ez�x; z; Z� � Ēz�x; z� � δEz�x; z; Z�;
Hy�x; z; Z� � H̄y�x; z� � ηδHy�x; z; Z�; (3)

where Ā�x; z� and δA�x; z; Z� are the slowly (averaged) and
rapidly varying parts of each electromagnetic field component
A, respectively (A � Ex; Ez; Hy). The considered Ansatz,
where each field component is a Taylor expansion up to first
order in η, has been suitably chosen to self-consistently assure
that finite and nontrivial results are obtained in the asymptotic
η → 0 limit. Substituting the Fourier series of ϵx and ϵ−1z and
the Ansatz of Eqs. (3) into Maxwell equations (1), after sepa-
rating the slowly and rapidly varying contributions, we obtain
the coupled equations

∂zĒx − ∂xĒz � iωμ0H̄y;

∂zH̄y � iωϵ0�hϵxiĒx � ηhδϵxδExi�;

Ēz �
i

ωϵ0
�hϵ−1z i∂xH̄y � ηhδϵ�−1�z ∂xδHyi� (4)

and

∂ZδEx − ∂xδEz � 0;

∂ZδHy � iωϵ0δϵxĒx;

δEz �
i

ωϵ0
δϵ�−1�z ∂xH̄y: (5)

It is important to stress that no terms have been neglected
when deriving Eqs. (4), whereas only the leading contribu-
tions (the lowest powers of η) has been retained to obtain
Eqs. (5). After integration on Z and using Eqs. (2), Eqs. (5)
yield the rapidly varying parts of the field amplitudes as func-
tions of the slow ones, i.e.,

δEx � 1
k0ωϵ0

X
n≠0

bn
n
eik0nZ∂2xH̄y;

δEz � −

1
iωϵ0

X
n≠0

bneik0nZ∂xH̄y;

δHy � ωϵ0
k0

X
n≠0

an
n
eik0nZĒx: (6)

Finally, substituting Eqs. (6) into Eqs. (4), we get

∂zĒx − ∂xĒz � iωμ0H̄y;

∂zH̄y � iωϵ0

�
ϵ�eff�x Ēx − i

τ�eff�Z0

ϵ�eff�z k20
∂2xH̄y

�
;

∂xH̄y � −iωϵ0

�
ϵ�eff�z Ēz �

τ�eff�

k0
∂xĒx

�
; (7)

where Z0 �
������������
μ0∕ϵ0

p
is the vacuum impedance, and

ϵ�eff�x � hϵxi, ϵ�eff�z � hϵ−1z i−1 and

τ�eff� � iηϵ�eff�z

X
n≠0

a
−nbn
n

: (8)

It is evident that in the limit η → 0 the parameter τ�eff� vanishes
and the multiscale approach considered in this paper

Fig. 1. Sketch of graphene-based metamaterial unit cell. ϵj and dj
(j � 1; 2) are the relative dielectric permittivities and the thicknesses
of the dielectric layers, respectively.
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reproduces the results of the well-known standard EMT [18].
Furthermore, it is worth noting that in the case in which the
structure admits mirror symmetry with respect a specific
plane z � z0, i.e., the relations ϵx�z� � ϵx�−z� z0� and
ϵz�z� � ϵz�−z� z0� hold, it is straightforward to prove that
the dielectric Fourier coefficients are such that a

−n �
exp�i2πnz0∕d�an and b

−n � exp�i2πnz0∕d�bn so that a
−nbn �

anb−n and the series of Eq. (8) provides a vanishing τ�eff�.
Therefore, the slowly varying and leading electromagnetic
field can experience the effect of the novel terms proportional
to τ�eff� in the effective Maxwell equations of Eq. (7) only if the
multilayer does not exhibit an inversion center.

3. SPATIAL DISPERSION AND CHIRALITY
Comparing the second and the third of Eqs. (7) with the stan-
dard equations ∂zH̄y � iωD̄x, ∂xH̄y � −iωϵ0D̄z and using the
third of Eqs. (7) to substitute for the magnetic field derivative,
we obtain

D̄x � ϵ0

�
ϵ�eff�x Ēx −

τ�eff�

k0
∂xĒz −

τ�eff�2

ϵ�eff�z k20
∂2xĒx

�
;

D̄z � ϵ0

�
ϵ�eff�z Ēz �

τ�eff�

k0
∂xĒx

�
; (9)

which are the structure effective constitutive relations. Note
that Eqs. (9) contain terms proportional to the first and second
x-spatial derivatives of the field components, terms usually
arising when dealing with a weakly spatially nonlocal
medium. Exploiting the fact that the effective Maxwell’s equa-
tions are invariant with respect to transformation D̄0

x �
D̄x − ∂zQ, D̄0

z � D̄z � ∂xQ, and H̄ 0
y � H̄y − iωQ (where Q�x; z�

is an arbitrary function), after setting Q � −ϵ0τ
�eff�∕k0Ēx, we

obtain the equivalent effective constitutive relations

D̄0
x � ϵ0

�
�ϵ�eff�x � τ�eff�2�Ēx −

τ�eff�2

ϵ�eff�z k20
∂2xĒx

�
� i

τ�eff�

c
H̄ 0

y;

D̄0
z � ϵ0ϵ

�eff�
z Ēz

B̄y � μ0H̄ 0
y − i

τ�eff�

c
Ex: (10)

Therefore, for η ≪ 1 (quasi-homogenization regime), the
terms proportional to τ�eff� in Eqs. (10) yield an effective
bianisotropic medium response (i.e., of the form D �
ϵ0ϵE� �1∕c��χT − iκT �H, B � μ0μH� �1∕c��χ � iκ�E [22])
with nonreciprocity dyadic χ � 0 and chirality dyadic κ not
vanishing (with only nonvanishing component κ21 � −τ�eff�).
Therefore, for TM waves, the multilayer mirror asymmetry
provides the medium an effective anisotropic chiral response.

4. GRAPHENE-INDUCED TUNABLE
ELECTROMAGNETIC CHIRALITY
Graphene sheets can both break the mirror symmetry
and provide the structure electromagnetic tunability. In order
to discuss this point, we consider a bilayer structure whose
unit cell comprises two dielectric layers separated by a
graphene sheet. The dielectric permittivities of such a struc-
ture can be written, within the unit cell 0 ≤ z < d, as
ϵx � Ξ�z� � �iσ1∕ωϵ0�δ�z − d1� and ϵz � Ξ�z�, where Ξ�z� �
ϵ1Π��z − d1∕2�∕d1� � ϵ2Π��z − d2∕2 − d1�∕d2�, Π�ζ� is the

rectangular function (Π�ζ� � 0 if jζj > 1∕2, Π�ζ� � 1∕2 if
jζj � 1∕2, and Π�ζ� � 1 if jζj < 1∕2), δ�ζ� is the Dirac delta
function, and σ1 is the surface conductivity of the graphene
layer. In this model, the graphene sheet is infinitesimally thin,
and the current it supports is along the x direction, thus solely
affecting the bilayer x component of the permittivity tensor. In
addition, it is evident that the positioning of the graphene
sheets provides the structure the lack of a mirror symmetry
plane along the stacking direction. The structure effective
parameters are easily evaluated and are

ϵ�eff�x � 1
d

�
d1ϵ1 � d2ϵ2 � i

σ1
ωϵ0

�
;

ϵ�eff�z � d
�
d1
ϵ1

� d2
ϵ2

�
−1
;

τ�eff� � i
d1d2
2cϵ0d2

ϵ�eff�z σ1

�
1
ϵ2

−

1
ϵ1

�
; (11)

where the expression of τ�eff� is obtained after the straightfor-
ward summation of the series in Eq. (8). Evidently τ�eff� van-
ishes if there is no graphene (σ1 � 0, discussed in
Refs. [18,19]) or if the dielectrics are identical (ϵ1 � ϵ2, dis-
cussed in Refs. [12–14]) since in both situations the structure
does show a mirror symmetry plane. It is worth noting that the
proposed method for producing electromagnetic chirality us-
ing graphene sheets is very efficient since the parameter τ�eff�

of Eqs. (11) can easily be tuned and enhanced by acting on
ϵ�eff�z (which can be set to have a large magnitude through
tailoring the multilayer structure) and on the dielectric inho-
mogeneity ��1∕ϵ2� − �1∕ϵ1��.

In the following numerical examples, we choose the wave-
length λ � 10.71 μm and the layer dielectric permittivities
ϵ1 � −1.87� 0.16i and ϵ2 � 2.25 associated to silicon carbide
(SiC) [23] and PMMA [24], respectively. In addition we adopt
the semiclassical expression for the graphene conductivity σ1
holding if jμcj ≫ KbT (μc is the chemical potential, Kb is the
Boltzmann’s constant, and T is the temperature) and obtained
by taking into account the inter- and intra-band contributions
(see Eqs. (4) and (5) in Ref. [25]). Note that the graphene
surface conductivity depends on the frequency ω, the chemi-
cal potential μc, the temperature T , and the phenomenological
scattering rate Γ. Here we assume T � 300 K and
Γ � 0.43 meV. In addition, setting d1 � d2, the effective per-
mittivity z component is ϵ�eff�z � −18.43� 9.60i, and it is not
affected by the chemical potential, whereas the effective per-
mittivity x component ϵ�eff�x and the chiral parameter τ�eff� can
be tuned by varying the graphene chemical potential through
external voltage gating.

In Fig. 2, we report the real (solid line) and imaginary
(dashed line) parts of ϵ�eff�x and τ�eff�, respectively, as functions
of μc for η � 1∕15. The tunability of the overall electromag-
netic response is evident, and it is also remarkable that in this
case a transition from a hyperbolic behavior to an anisotropic
negative dielectric one occurs: the real part of the x compo-
nent of the dielectric permittivity ϵ�eff�x is positive in the region
0.1 eV < μc < 0.2 eV [shadow area in Fig. 2(a)], and it is neg-
ative in the region μc > 0.2 eV, whereas Re�ϵ�eff�z � is negative
everywhere.

In order to check and discuss the predictions of our multi-
scale approach, we here consider the scattering process of TM
waves by a graphene-based metamaterial slab lying in the
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region 0 < z < L, which, using the standard transfer matrix
method, admits full analytical description. Accordingly we
evaluate the exact optical transfer function (OTF) defined
as OTF � H�t�

y ∕H�i�
y , where H�i�

y and H�t�
y are the amplitudes

of the incident and transmitted magnetic fields evaluated at
z � 0 and z � L, respectively, and where the x dependence
exp�ikxx� has been assumed (kx is the transverse component
of the wave vector). On the other hand, the system of Eqs. (7)
together with Eqs. (6) can be solved to obtain the OTF in the
quasi-homogenized regime. In Fig. 3 we compare the exact
OTF (solid lines) with those predicted by our multiscale ap-
proach (dashed lines) and by the standard EMT (dash-circle
lines) for L � 4.01 μm, η � 1∕8, and μc � 0.3 eV. In this
example, the x component of dielectric permittivity and the
chiral coefficient are ϵ�eff�x � 0.095� 0.079i and τ�eff� �
0.17 − 0.079i, respectively. We note that our nonlocal multi-
scale approach is in good agreement with the exact OTF [both
predict a resonance at kx � 1.55k0 as shown in Fig. 3(a)],
whereas the discrepancies between EMT and exact approach
predictions (evidently expected in the not fully homogenized
regime at η � 1∕8) prove that the predicted nonlocal mecha-
nisms do affect the electromagnetic medium response. Note
also that such discrepancies are more pronounced around the
resonance peak typical of the chosen background hyperbolic

metamaterial [26], which is shifted and squeezed by the novel
nonlocal mechanisms.

5. CONCLUSION
In conclusion we have shown that a multilayer structure not
exhibiting mirror symmetry along the stacking direction, in
the quasi-homogenized regime, provides anisotropic chiral
response, which is generally absent in standard bilayer meta-
materials, in turn tunable through the graphene chemical
potential.

ACKNOWLEDGMENTS
This research has been funded by the Italian Ministry of Re-
search (MIUR) through the “Futuro in Ricerca” FIRB-grant
PHOCOS—RBFR08E7VA and by Progetto DOTE Lombardia.

REFERENCES
1. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and

broadband optoelectronic devices,” ACS Nano 6, 3677–3694
(2012).

2. S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in
graphene,” Phys. Rev. Lett. 99, 016803 (2007).

3. M. Jablan, H. Buljan, andM. Soljacic, “Plasmonics in graphene at
infrared frequencies,” Phys. Rev. B 80, 245435 (2009).

4. F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene
plasmonics: a platform for strong light–matter interactions,”
Nano Lett. 11, 3370–3377 (2011).

5. S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic
response of graphene: frequency multiplication and the self-
consistent-field effects,” J. Phys. Condens. Matter 20, 384204
(2008).

6. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang,
and X. Zhang, “A graphene-based broadband optical modulator,”
Nature 474, 64–67 (2011).

7. M. Tamagnone, A. Fallahi, J. R. Mosig, and J. Perruisseau-
Carrier, “Fundamental limits and near-optimal design of gra-
phene modulators and non-reciprocal devices,” Nat. Photonics
8, 556–563 (2014).

8. T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors
for high-speed optical communications,” Nat. Photonics 4,
297–301 (2010).

9. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y.
Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat.
Photonics 5, 411–415 (2011).

10. A. Vakil and N. Engheta, “Transformation optics using
graphene,” Science 332, 1291–1294 (2011).

11. A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene
hyperlens for terahertz radiation,” Phys. Rev. B 86, 121108(R)
(2012).

12. I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S.
Kivshar, “Hyperbolic metamaterials based on multilayer
graphene structures,” Phys. Rev. B 87, 075416 (2013).

13. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based
tunable hyperbolic metamaterials and enhanced near-field
absorption,” Opt. Express 21, 7614–7632 (2013).

14. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene–
dielectric composite metamaterials: evolution from elliptic to
hyperbolic wavevector dispersion and the transverse epsilon-
near-zero condition,” J. Nanophoton. 7, 073089 (2013).

15. A. Madani, S. Zhong, H. Tajalli, S. R. Entezar, A. Namdar, and Y.
Ma, “Tunable metamaterials made of graphene-liquid
crystal multilayers,” Prog. Electromagn. Res. 143, 545–558
(2013).

16. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous
Media (Pergamon, 1960).

17. S. Zouhdi, A. Sihvola, and A. P. Vinogradov, Metamaterials
and Plasmonics: Fundamentals, Modelling, Applications
(Springer-Verlag, 2008).

Fig. 2. Effective parameters (a) ϵ�eff�x and (b) τ�eff� as functions of the
graphene chemical potential μc.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10(a)

k
x
/k

0

M
T

F

Exact
standard EMT
Nonlocal EMT

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−2

0

2

PT
F 

(r
ad

)

(b)

k
x
/k

0

Fig. 3. Comparison among the OTFs as evaluated from the exact ma-
trix method (solid lines), from the standard EMT (dashed-circle lines),
and from the nonlocal multiscale EMT (dashed lines). The functions
MTF and PTF are related to the OTF by the relation OTF�kx� �
MTF�kx� exp�iPTF�kx�� (i.e., MTF and PTF are the modulus and phase
of OTF).

124 Photon. Res. / Vol. 2, No. 5 / October 2014 Rizza et al.



18. J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky,
“Nonlocal effects in effective-medium response of nanolayered
metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).

19. A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “En-
gineered optical nonlocality in nanostructured metamaterials,”
Phys. Rev. B 84, 045424 (2011).

20. C. Rizza and A. Ciattoni, “Effective medium theory for Kapitza
stratified media: diffractionless propagation,” Phys. Rev. Lett
110, 143901 (2013).

21. C. Rizza and A. Ciattoni, ’Kapitza homogenization of deep
gratings for designing dielectric metamaterials,” Opt. Lett. 38,
3658–3660 (2013).

22. I. V. Semchenkoy, S. A. Khakhomovy, S. A. Tretyakovzx,
A. H. Sihvola, and E. A. Fedosenkoy, “Reflection and

transmission by a uniaxially bi-anisotropic slab under normal
incidence of plane waves,” J. Phys. D 31, 2458–2464
(1998).

23. E. D. Palik, Handbook of Optical Constants of Solids
(Academic, 1985).

24. R. T. Graf, F. Eng, J. L. Koenig, and H. Ishida, “Polarization
modulation Fourier transform infrared ellipsometry of thin
polymer films,” Appl. Spectrosc. 40, 498–503 (1986).

25. G. W. Hanson, “Dyadic Green’s functions and guided surface
waves for a surface conductivity model of graphene,” J. Appl.
Phys. 103, 064302 (2008).

26. X. Li, S. He, and Y. Jin, “Subwavelength focusing with a
multilayered Fabry–Perot structure at optical frequencies,”
Phys. Rev. B 75, 045103 (2007).

Rizza et al. Vol. 2, No. 5 / October 2014 / Photon. Res. 125


	XML ID ack1

